34,883 research outputs found

    Impact of large-scale dynamic versus thermodynamic climate conditions on contrasting tropical cyclone genesis frequency

    Get PDF
    Significant advances have been made in understanding the key climate factors responsible for tropical cyclone (TC) activity, yet any theory that estimates likelihood of observed TC formation rates from mean climate states remains elusive. The present study investigates how the extremes of observed TC genesis (TCG) frequency during peak TC seasons are interrelated with distinct changes in the large-scale climate conditions over different ocean basins using the global International Best Track Archive for Climate Stewardship (IBTrACS) dataset and ERA-Interim for the period 1979–2014. Peak TC seasons with significantly high and low TCG frequency are identified for five major ocean basins, and their substantial spatial changes in TCG are noted with regionally distinct differences. To explore the possible climate link behind such changes, a suite of potentially relevant dynamic and thermodynamic climate conditions is analyzed. Results indicate that the observed changes in extreme TCG frequency are closely linked with distinct dominance of specific dynamic and thermodynamic climate conditions over different regions. While the combined influences of dynamic and thermodynamic climate conditions are found to be necessary for modulating TC formation rate over the North Atlantic, eastern Pacific, and southern Indian Oceans, significant changes in large-scale dynamic conditions appear to solely control the TCG frequency over the western Pacific and South Pacific basins. Estimation of the fractional changes in genesis-weighted climate conditions also indicates the coherent but distinct competing effects of different climate conditions on TCG frequency. The present study further points out the need for revising the existing genesis indices for estimating TCG frequency over individual basins

    The 30th Anniversary of the Supercomputing Conference: Bringing the Future Closer - Supercomputing History and the Immortality of Now

    Get PDF
    A panel of experts discusses historical reflections on the past 30 years of the Supercomputing (SC) conference, its leading role for the professional community and some exciting future challenges

    Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke

    Full text link
    Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance—walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint powers, and metabolic power. Compared to walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4±6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic (R2= 0.83, P= 0.004) and nonparetic (R2= 0.73, P= 0.014) ankle power. Interestingly, despite the exosuit providing direct assistance to only the paretic limb, changes in metabolic power were related to changes in nonparetic limb COM power (R2= 0.80, P= 0.007), not paretic limb COM power (P> 0.05). These findings provide a fundamental understanding of how individuals poststroke interact with an exosuit to reduce the metabolic cost of hemiparetic walking.Accepted manuscript2019-03-0

    Projectile-shape dependence of impact craters in loose granular media

    Full text link
    We report on the penetration of cylindrical projectiles dropped from rest into a dry, noncohesive granular medium. The cylinder length, diameter, density, and tip shape are all explicitly varied. For deep penetrations, as compared to the cylinder diameter, the data collapse onto a single scaling law that varies as the 1/3 power of the total drop distance, the 1/2 power of cylinder length, and the 1/6 power of cylinder diameter. For shallow penetrations, the projectile shape plays a crucial role with sharper objects penetrating deeper.Comment: 3 pages, 3 figures; experimen

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 2, Part 2: Appendixes B, C, D and E

    Get PDF
    The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented

    Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity

    Get PDF
    Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination. Copyright © 2010 the authors

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    Get PDF
    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability
    • …
    corecore